Course Unit Descriptor

Study Programme: Master of Applied Mathematics

Course Unit Title: Equations of Mathematical Physics

Course Unit Code: MB22

Name of Lecturer(s): Professor Marko Nedeljkov

Type and Level of Studies: Master Academic Degree

Course Status (compulsory/elective): Elective

Semester (winter/summer): Summer

Language of instruction: English

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

Number of ECTS Allocated: 5

Prerequisites: None

Course Aims:

Demonstration of PDE methods in physics and other sciences.

Learning Outcomes:

Basic principles of mathematical modeling and finding of physically relevant solutions.

Syllabus:

Theory

Compressible fluid dynamics (gas dynamics)

Incompresssible models (Navier-Stokes equation)

Hyperbolic waves (Klaein-Gordon, Schroedinger equations)

Models in life sciences

Stochastic models

Practice

Problems corresponding to theoretical part.

Required Reading:

- 1. G.B. Whitham, Linear and Nonlinear Waves, II ed. Wiley Interscience, 1999.
- 2. M. Nedeljkov, Introduction to Nonlinear Wave Models, Szeged-Novi Sad 2011.

Weekly Contact Hours: 6 Lectures: 3 Practical work: 1

Teaching Methods:

Lectures and students group work

Knowledge Assessment (maximum of 100 points): 100

Pre-exam obligations	points	Final exam	points
Preliminary exam(s)	50	oral exam	50

The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam, project presentation, seminars, etc.