Course Unit Descriptor

Study Programme: Applied Mathematics – Data Science								
Course Unit Title: Signals and systems								
Course Unit Code: MDS11								
Name of Lecturer(s): Nataša M. Krklec Jerinkić								
Type and Level of Studies: Master studies								
Course Status (compulsory/elective): Elective								
Semester (winter/summer): Winter								
Language of instruction: English								
Mode of course unit delivery (face-to-face/distance learning): Face-to-face								
Number of ECTS Allocated: 6								
Prerequisites: Basics of linear algebra								
Course Aims:								
- Understanding of fundamental concepts in communications, control, and signal processing.								
Learning Outcomes:								
- Acquired knowledge of fundamental concepts in communications, control, and signal processing								
- Ability to effectively communicate/collaborate with electrical engineers on both practical and research problems								
- Ability of students to effectively utilize their mathematical skills on both practical and research problems in								
communications, control, and signal processing								
- Ability to model real-world systems using the taught concepts								
Syllabus:								
Theory								
Signals: Continuous time signals, Discrete time signals, Fourier series, Continuous time Fourier transform, Nyquist-								
Shannon sampling theorem. Systems: Linear time invariant systems (continuous time and discrete time): Input-output								
representation, State-space representation, Laplace transform for continuous time systems, Z-transform for discrete time								
systems; Feedback: Control loop, Linear feedback systems, Controllability, Observability, Stability; Communication								
fundamentals: Communication channel, Modulation, Demodulation, Coding, Decoding.								
Practice								
Application examples in telecom, electric grid (smart grid), machine learning, sensor networks, etc. Required Reading:								
Selected parts of the following books:								
1. A. V. Oppenheim, and A. S. Willsky: Signals and Systems, Prentice Hall, 1982.								
 A. V. Oppennenn, and A. S. Whisky. Signals and Systems, Frence Han, 1982. S. Haykin: Digital Communication Systems, Wiley, 2013. 								
3. J. P. Hespanha: Linear		•	•	. 2009.				
		Lectures: 2	-		al work: 3			
Teaching Methods:	-							
Lectures; revisions of the material; active students' participation in problem solving; knowledge tests – colloquia;								
homeworks.								
Knowledge Assessment (maximum of 100 points):								
Pre-exam obligations	points		Final exam		points			
Active class			written exam		40			

participation						
Practical work	30	oral exam				
Preliminary exam(s)	30					
Seminar(s)						
The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam,						
project presentation, seminars, etc.						