Course Unit Descriptor

Study Programme: Computer Science

Course Unit Title: Introduction to Computational Science

Course Unit Code: CS252

Name of Lecturer(s): Nataša Krklec Jerinkić

Type and Level of Studies: Bachelor Academic Degree

Course Status (compulsory/elective): Compulsory

Semester (winter/summer): Summer

Language of instruction: Serbian (primary), English (secondary)

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

Number of ECTS Allocated: 7

Prerequisites: None

Course Aims:

- Knowledge of selected fundamental algorithms in computational science
- Knowledge of essential notions and methods in computational science
- Knowledge of basic techniques for analysis of numerical algorithms

Learning Outcomes:

- Ability to choose the appropriate numerical method for concrete problems
- Ability to interpret numerical results
- Ability to implement numerical algorithms efficiently in selected programming languages

Syllabus:

Theory

- Error, stability, convergence, including truncation and round-off
- Function approximation including Taylor's series, interpolation, extrapolation, and regression
- Numerical differentiation and integration (Simpson's Rule, explicit and implicit methods)
- Differential equations (Euler's Method, finite differences)
- Direct and iterative methods for linear systems
- Linear least squares problems
- Eigenvalue decomposition; singular value decomposition
- Introduction to modeling

Practice

Suggested Reading:

1. Uri Ascher and Chen Greif: A First Course in Numerical Methods. SIAM, 2011.

2. Gilbert Strang: Computational Science and Engineering. Wellesley, MA: Wellesley-Cambridge Press, 2007.

Weekly Contact Hours: 5	Lectures: 3	Practical work: 2

Teaching Methods:

Lectures; revisions of the material; active students' participation in problem solving; knowledge test -colloquia;

application of the taught material on real world examples.

Knowledge Assessment (maximum of 100 points):

Pre-exam obligations	points	Final exam	points	
Colloquia	40	Oral exam	60	
The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam,				
project presentation, seminars, etc.				