Study Programme: Master Academic Studies in Chemistry	
Course Unit Title: Reactive intermediates	
Course Unit Code: IHO-507	
Name of Lecturer(s): Assistant professor Aleksandar Oklješa	
Type and Level of Studies: Master of Science Degree	
Course Status (compulsory/elective): Elective	
Semester (winter/summer): Winter	
Language of instruction: English	
Mode of course unit delivery (face-to-face/distance learning): Face-to-face	
Number of ECTS Allocated: 6	

Prerequisites: none

Course Aims:

Expanding the knowledge base of reactive intermediates (theory, mechanism, synthesis, structure, and stereochemistry) and their applications in modern organic synthesis.

Learning Outcomes:

After successfully completing the course, the student is able to understand the importance of reactive intermediates and apply knowledge in solving specific problems in organic synthesis.

Syllabus:

Theory

Carbocations. Carbanions. Radicals. Carbenes. Nitrenes. Miscellaneous Intermediates. Structures and geometry of reactive intermediates, generation, stability and application in organic synthesis.

Practice

Laboratory synthesis of organic compounds.

Required Reading:

1. M. S. Singh; Reactive Intermediates in Organic ChemistryStructure, Mechanism, and Reactions, WILEY-VCH, Weinheim, 2014.

2. R. A. Moss, M. P. Doyle; CONTEMPORARY CARBENE CHEMISTRY, John Wiley & Sons, Inc., New Jersey, 2014.

3. D. E. Falvey, A. D. Gudmundsdottir; NITRENES AND NITRENIUM IONS, John Wiley & Sons, Inc., New Jersey, 2013.

Weekly Contact Hours	: Lectures: 3 (45)	Practical work: 2 (30)		
Teaching Methods:					
Lectures, laboratory work					
Knowledge Assessment (maximum of 100 points): 100					
Pre-exam obligations	points	Final exam	points		
Active class	10	written exam	50		
participation		written exam	50		
Practical work	40				