# Course Unit Descriptor

**Study Programme:** Computer Science – Master

Course Unit Title: Advanced Computational Science and Optimization

**Course Unit Code: CS757** 

Name of Lecturer(s): Dušan Jakovetić

Type and Level of Studies: Master Academic Degree

Course Status (compulsory/elective): Elective

Semester (winter/summer): Summer

Language of instruction: Serbian (primary), English (secondary)

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

**Number of ECTS Allocated:** 6

**Prerequisites:** Introduction to Computational Science

#### **Course Aims:**

- Understanding of a wide range of standard and modern numerical methods, with an emphasis on optimization methods
- Ability to select an appropriate numerical algorithm for the problem at hand
- Ability to implement the taught algorithms in selected programming languages

## **Learning Outcomes:**

- Ability to apply the taught algorithms on real-world problems
- Ability to apply the taught algorithms on research problems from various domains of computer science
- Ability to customize and analyze efficient numerical algorithms for a given application

## **Syllabus:**

#### Theory

Iterative methods for solving systems of linear equations: Jacobi, Gauss-Seidel, relaxation methods; First order optimization methods: gradient; projected gradient; line search; proximal gradient; accelerated Nesterov gradient; accelerated gradient for non-smooth optimization (FISTA); Second odred optimization methods: Newton; quasi-Newton; Broyden–Fletcher–Goldfarb–Shanno (BFGS); limited memory BFGS; Randomized optimization methods: randomized coordinate gradient; stochastic/online gradient; Parallel and distributed optimization methods: primal decomposition; dual decomposition; augmented Lagrangian; ADMM; distributed gradient.

#### **Practice**

Application examples in various domains of computer science; implementation of the taught methods in selected software languages; application of selected methods on real-world examples.

# **Required Reading:**

- 1. S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004
- 2. J. Nocedal and S. Wright: Numerical Optimization, Springer, 2011
- 3. D. Bertsekas and J. Tsitsiklis: Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, 1989

Weekly Contact Hours: 4 Lectures: 2 Practical work: 2

## **Teaching Methods:**

Lectures; revisions of the material; active students' participation in problem solving; knowledge tests – colloquia; application of the taught material on real world examples.

| Knowledge Assessment (maximum of 100 points):                                                                       |        |            |        |
|---------------------------------------------------------------------------------------------------------------------|--------|------------|--------|
| Pre-exam obligations                                                                                                | points | Final exam | points |
| Colloquia                                                                                                           | 40     | Oral exam  | 60     |
| The methods of knowledge assessment may differ; the table presents only some of the entions; written even oral even |        |            |        |

The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam, project presentation, seminars, etc.