Study program: Integrated academic studies of Pharmacy			
Type and level of the study program: integrated academic studies			
Course title: QUANTUM CHEMISTRY (PhV-QUANT)			
Teacher: Mihalj M. Poša, Zita J. Farkaš-Agatić			
Course status: elective			
ECTS Credits: 3			
Condition: Organic chemistry I; Organic chemistry II			
Course aim			
Teach students about the theory of quantum chemistry that is used for calculating the density distribution of electrons in the molecule, and the			
parameters resulting from the distribution of electrons in order to be used as molecular descriptors			
Expected outcome of the course:			
Quantum nature of the distribution of electrons in multinuclear systems.			
Students will be able to independently using appropriate software to calculate molecular descriptors derived from the distribution of electrons.			
Course description			
Theoretical education			
1. Wave function			
2. Born Openchaimer approximation			
3. Valence connection theory			
4. Molecule orbit theory			
5. Walsh diagram			
6. Huckel method			
 Semi empirical methods Ab inito methods 			
9. Application: Solvatation Energy			
9. Application. Solvatation Energy			
Practical education: exercises, other forms of education, research related activities			
Usage of proper software			
Literature			
Compulsory			
1. Grant GH, Richards WG. Computational Chemistry, Oxford University Press, 1955			
Additional			
Number of active classes Other			Other:
Lectures: Practice: O	other types of teaching:	Research related activities:	
30 15			
Teaching methods			
Lectures, practice			
Student activity assessment (maximally 100 points)			
Pre-exam activities	points	Final exam	points
Lectures		Written	
Practices		Oral	40
Colloquium			
Essay	60		