Course Unit Descriptor

Study Programme: Applied Mathematics (MB)

Course Unit Title: Continuum Mechanics

Course Unit Code: MB24

Name of Lecturer(s): Srboljub S. Simić

Type and Level of Studies: Master Academic Degree

Course Status (compulsory/elective): Elective

Semester (winter/summer): Winter

Language of instruction: English

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

Number of ECTS Allocated: 6

Prerequisites: None

Course Aims: To present students basic postulates and problems of the Continuum Mechanics, as well as mathematical methods applied in their formulation and analysis.

Learning Outcomes: *Minimal*: Students are trained to understand basic assumptions and laws of Continuum Mechanics and perceive the role of mathematical methods in their formulation and solution of basic problems.

Expected: To master the application of mathematical methods to problems of Continuum Mechanics and to establish the correlation between physical phenomena and their description in proper mathematical notions.

Syllabus:

Theory

Vector and tensor algebra and analysis: vectors, tensors, tensor product; symmetric and skew symmetric tensors, orthogonal tensors, polar decomposition; scalar, vector and tensor fields, integral theorems. Continuum hypothesis. Kinematics: body, configuration, motion; referential and spatial description of motion; deformation, deformation gradient; velocity, velocity gradient, acceleration. Forces in continuous media, stress tensor. Basic equations: Lagrangian and Eulerian description; mass conservation, momentum, angular momentum and energy balance laws. Constitutive relations: models of continuous media, entropy inequality. Elasticity and thermoelasticity. Ideal and viscous fluids. Navier-Stokes equations. Ideal gases, gas dynamics equations, weak solutions, shock waves. Rarefied gases, velocity distribution function, interaction of particles, Boltzmann equation. Collision integral, collision invariants. Equilibrium distribution. Macroscopic equations. *H*-theorem, equilibrium states, local equilibrium. Model equations. Boundary conditions.

Practice

Exercises follow the theoretical part of the course. They illustrate the application of theoretical results to solution of particular problems.

Required Reading:

- 1. M.E. Gurtin: Introduction to Continuum Mechanics, Academic Press, New York, 1981.
- 2. J. Jarić: Mehanika kontinuuma, Građevinska knjiga, Beograd, 1989.
- 3. T. Ruggeri; Introduzione alla termomeccanica dei continui, Monduzzi Editoriale, Milano, 2013.
- 4. P. Chadwick: *Continuum Mechanics*, Dover Publications, 1999.
- 5. R.B. Bird, W.E. Stewart, E.N. Lightfoot: *Transport Phenomena*, 2nd Ed., John Wiley & Sons, New York, 2002.
- 6. C. Cercignani: *Rarefied Gas Dynamics*, Cambridge University Press, Cambridge, 2000.
- 7. C. Villani: A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, vol. 1, North-Holland, Amsterdam, 2002.

-j			
Weekly Contact Hours:	Lectures: 3	Practical work: 2	

Teaching Methods: Classical lectures adjoined with slides and numerical simulations. Discussion with students. Typical					
problems are solved which illustrate basic concepts.					
Knowledge Assessment (maximum of 100 points):					
Pre-exam obligations	Points	Final exam	points		
Preliminary exam(s)	60	Oral exam	40		
The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam, project presentation, seminars, etc.					