Course Unit Descriptor
Study Programme: Applied Mathematics – Data Science
Course Unit Title: Numerical Linear Algebra 1
Course Unit Code: MDS03
Name of Lecturer(s): Vladimir R. Kostić
Type and Level of Studies: Master studies
Course Status (compulsory/elective): Compulsory
Semester (winter/summer): Winter
Language of instruction: English
Mode of course unit delivery (face-to-face/distance learning): Face-to-face
Number of ECTS Allocated: 6
Prerequisites: none
Course Aims: Mastering basic algorithms of numerical linear algebra for large linear systems and thier implementation in MATLAB.
Learning Outcomes:
Students will be able to use successfully algorithms of numerical linear algebra built-in in MATLAB, to independently solve problems in the field of applied linear algebra and to construct advanced numerical teheniques for large linear systems and matrix equations.
Syllabus:
Theory
Basis of iterative methods for solving systems of linear equations. Sparse matrix methods for large linear systems. Classical iterative methods and their paralelization. Projective methods and their paralelization. Solving the problem of least squares. Numerical algorithms for matrix equations (Lyapunov, Riccati). Implementation of algorithms in MATLAB.
Practice
Use of built-in functions in MATLAB for solution of large sparse linear systems and matrix equations arising in applications (dynamical systems, control theory, signal processing, network theory). Implementation of advanced numerical algorithms in MATLAB.
Required Reading:
1. Lloyd N. Trefethen and David Bau, III: Numerical Linear Algebra, SIAM, 1997.
2. James W. Demmel: Applied Numerical Linear Algebra, SIAM, 1997.

James W. Demmel: Applied Numerical Linear Algebra, SIAIVI, 1997.
Yousef Saad: Iterative Methods for Sparse Linear Systems, Second Edition SIAM, 2003.

Weekly Contact Hours	: Lectures: 2	P	Practical work: 3			
Teaching Methods: Lectures, revisions of the material, active student participation in problem solving, knowledge tests - colloquia.						
Knowledge Assessment (maximum of 100 points): 100						
Pre-exam obligations	points	Final exam	points			

Active class		written exam	50		
participation					
Practical work		oral exam			
Preliminary exam(s)	50	Course project			
Seminar(s)					
The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam,					
project presentation, seminars, etc.					