Course Unit Descriptor
Study Programme: Applied Mathematics – Data Science
Course Unit Title: Pattern recognition and machine learning
Course Unit Code: MDS06
Name of Lecturer(s): Dušan Jakovetić, Miloš Radovanović
Type and Level of Studies: Master studies
Course Status (compulsory/elective): Compulsory
Semester (winter/summer): Summer
Language of instruction: English
Mode of course unit delivery (face-to-face/distance learning): Face-to-face
Number of ECTS Allocated: 6
Prerequisites: Basics of linear algebra and probability
Course Aims: - Understanding of a wide range of pattern recognition/machine learning methods
- Understanding of advantages/disadvantages of the taught methods
- Ability to select appropriate methods for the problem at hand
- Ability to implement the taught methods in MATLAB
Learning Outcomes:
- Ability and experience in applying the taught methods on real-world problems

- Ability to apply the taught methods on research problems from a wide variety of application areas

Syllabus:

Theory

Statistical Pattern Recognition: Bayesian Decision Theory, Quadratic Classifiers, Parameter and Density Estimation, Nearest Neighbors; Neural network approaches: Linear Discriminants, Multilayer Perceptrons, Radial Basis Functions, Validation; Clustering: Mixture models and EM algorithm, Statistical Clustering, Self-Organizing Maps; Dimensionality Reduction: Principal Components Analysis, Fisher's Discriminants Analysis, Feature Subset Selection; Advanced topics: Support Vector Machines, Hidden Markov Models, Ensemble Learning, Evolutionary algorithms.

Practice

Application examples in electric grid (smart grid), computer vision, medical imaging, speech recognition, agriculture, etc.; Implementation of the taught methods in MATLAB; Application of selected methods on real-world examples through the course project.

Required Reading:

C. Bishop: Pattern recognition and machine learning, Springer, 2006

T. Hastie, R. Tibshirani and J. Friedman: Elements of Statistical Learning. Springer, 2009

R.O. Duda, P.E. Hart and D.G. Stork: Pattern Classification, Wiley, 2000.

Weekly Contact Hours:		Lectures: 2		Practical work: 3	
Teaching Methods: Le – colloquia; application				nts' participation in problem solving; knowledge test s.	
Knowledge Assessmen	t (maxim	um of 100 points): 100		
Pre-exam obligations	points		Final exam	points	
Active class participation			written exam	40	
Practical work	30		oral exam		
Preliminary exam(s)	30		Course project		
Seminar(s)					
The methods of knowled	lge assess	ment may differ:	the table presents of	only some of the options: written exam, oral exam,	