Course Unit Descriptor

Study Programme: Applied Mathematics – Data Science

Course Unit Title: Distributed optimization with applications

Course Unit Code: MDS07

Name of Lecturer(s): Nataša M. Krklec Jerinkić

Type and Level of Studies: Master studies

Course Status (compulsory/elective): Compulsory

Semester (winter/summer): Summer

Language of instruction: English

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

Number of ECTS Allocated: 6

Prerequisites: Basics of optimization, multivariate calculus, linear algebra, and probability

Course Aims: Understanding of a wide range of modern optimization methods for large scale, parallel, and distributed optimization

- Ability to select appropriate algorithms for the problem at hand
- Ability to implement the taught algorithms in MATLAB

Learning Outcomes:

- Ability and experience in applying the taught algorithms on real-world problems
- Ability to apply the taught algorithms on research problems from a wide variety of application areas
- Ability to synthesize and analyze efficient distributed algorithms for a given application

Syllabus:

Theory

Modern first-order methods for large-scale optimization: proximal gradient; accelerated Nesterov gradient; accelerated gradient for non-smooth optimization (FISTA); Randomized methods: randomized coordinate gradient; stochastic/online gradient; online gradient method under privacy constraints; Parallel and distributed methods: primal decomposition; dual decomposition; augmented Lagrangian; ADMM; distributed gradient; distributed dual averaging; distributed approximate Newton.

Practice

Application examples in telecom, electric grid (smart grid), machine learning, sensor networks, etc.; Implementation of the taught methods in MATLAB; Application of selected methods on real-world examples through the course project.

Required Reading:

Selected papers in the field of distributed optimization

S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004

D.	Bertsekas,	Nonlinear	Programming,	Athena	Scientific.	2004
– .	Dor tookas,	1 tommeum	i iogianimini,	1 ItilCilu	Determine,	200 .

D. Bertsekas and J. Tsitsiklis: Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, 1989

Weekly Contact Hours: Lectures: 2 Practical work: 3

Teaching Methods: Lectures; revisions of the material; active students' participation in problem solving; knowledge tests – colloquia; application of the taught material on real-world examples.

Knowledge Assessment (maximum of 100 points): 100

Pre-exam obligations	points	Final exam	points
Active class	written exam	40	
participation		written exam	40
Practical work	30	oral exam	
Preliminary exam(s)	30	Course project	
Seminar(s)			

The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam, project presentation, seminars, etc.