Study Programme: Applied Mathematics – Data Science				
Course Unit Title: Network science				
Course Unit Code: MDS08				
Name of Lecturer(s): Nataša M. Krklec Jerinkić				
Type and Level of Studies: Master studies				
Course Status (compulsory/elective): Compulsory				
Semester (winter/summer): Winter				
Language of instruction: English				
Mode of course unit delivery (face-to-face/distance learning): Face-to-face				
Number of ECTS Allocated: 6				

Prerequisites: Basics of linear algebra, graph theory, probability and statistics

Course Aims: - Understanding of a wide range of network models, metrics, and processes

- Understanding of advantages/disadvantages of various network models for a given real-world application
- Ability to model and analyze networks using network analysis tools and libraries

Learning Outcomes:

- Ability and experience in modelling, sampling, and analyzing real-world networks
- Ability to apply the taught network concepts on research problems from a wide variety of application areas

Syllabus:

Theory

Elements of algebraic graph theory: adjacency matrix; Laplacian matrix; spectra of Laplacian matrix; Fiedler value. Graph types and representations. Network metrics and notions of connectedness, density, distance, centrality, transitivity and node similarity. Structure and evolution of complex networks: connected component analysis, k-cores, cliques and egonetworks, degree distribution analysis (identifying power-laws in empirical data and measuring of preferential attachment), assortativity mixing patterns, community structure, emergence of giant connected components, the densification law and shrinking diameters. Mathematical models of complex networks: random graphs (Erdős–Rényi, Gilbert, geometric models, the configuration model), small-world networks (Watts-Strogatz, Kleinberg) and scale-free networks (the Barabasi- Albert model and modifications, copying based models). Community detection techniques and graph clustering evaluation metrics. Link prediction. Processes on networks: diffusion; gossip; consensus; virus spreading; voter models; emergent behavior; mean-field analysis.

Practice

Application examples in telecom, electric grid (smart grid), sensor networks, social networks, medicine, etc.; Implementation of the taught methods in MATLAB/Java/R; Application of selected methods on real-world examples through the course project. Network analysis tools (e.g. Gephi, Pajek) and libraries (e.g. iGraph, Jung). Practical introduction to graph databases.

Required Reading:

E. D. K. Statistical Analysis of Network Data: Methods and Models, Springer, 2009

M. E. J. Newman: Networks - An introduction, Oxford University Press, 2010.

F. Chung: Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, No. 92, 1996

D. Easley, J. Kleinberg. Networks, Crowds and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010.

W. de Nooy, A. Mrvar, V. Batagelj. Exploratory Social Network Analysis with Pajek. Cambridge University Press, 2005.

Weekly Contact Hours:		ctures: 2	Practical work: 2
_		ns of the material; active stude material on real-world example	nts' participation in problem solving; knowledge tests s.
Knowledge Assessmen	t (maximum	of 100 points): 100	
Pre-exam obligations	points	Final exam	points
Active class			40
participation		written exam	40
Practical work	30	oral exam	
Preliminary exam(s)	30	Course project	
Seminar(s)			
The methods of knowled	lge assessme	nt may differ; the table presents	only some of the options: written exam, oral exam,
project presentation, sen	ninars, etc.		