Course Unit Descriptor

Study Programme: Applied Mathematics – Data Science

Course Unit Title: Introduction to Digital Signal Processing

Course Unit Code: MDS16

Name of Lecturer(s): Dušan Jakovetić

Type and Level of Studies: master studies

Course Status (compulsory/elective): elective

Semester (winter/summer): summer

Language of instruction: English

Mode of course unit delivery (face-to-face/distance learning): face-to-face

Number of ECTS Allocated: 6

Prerequisites: Basics of linear algebra, Signals and systems

Course Aims:

- Understanding of fundamental concepts in digital signal processing and their application in big data analytics

Learning Outcomes:

- Acquired knowledge of basic concepts in digital signal processing, digital signal transforms and their application in big data analytics

- Ability to communicate/collaborate with electrical engineers on practical and research problems

- Ability to design discrete-time signal processing systems using appropriate software tools

- Ability to solve real-world problems using the acquired knowledge

Syllabus:

Theory

Discrete time signals: Nyquist-Shannon sampling theorem, Discrete time Fourier

transform, Discrete Fourier transform, Fast Fourier transform; Discrete time systems: Linearity and time invariance,

Causality, Stability, Input-output representation, Analysis and characterization in frequency domain. Discrete Fourier

transform. Fast Fourier transform. Practical aspects of interfacing analog and digital signal processing. Digital filters:

Properties and design of FIR and IIR filters, practical implementation. Multirate signal processing. Adaptive filters.

Advanced topics in digital signal processing related to big data analytics: Sparse DFT, DSP on graphs.

Practice

Application examples in all domains where digital signal processing is applied.

Required Reading:

Selected parts of the following books:

5. John G. Proakis and Dimitris K. Manolakis: Digital Signal Processing, Principles, Algorithms and Applications, Prentice Hall, 2006.

6. Paolo Prandoni and Martin Vetterli: Signal Processing for Communications, EPFL Press, 2008.

7. Emmanuel Ifeachor and Barrie Jervis: Digital Signal Processing – A Practical Approach, Prentice Hall, 2001.

Weekly Contact Hours:	Lectures: 2	Practical work: 3		
Teaching Methods:				
Lectures; revisions of the materia	; active students' participation in pr	oblem solving; knowledge		

Knowledge Assessment (maximum of 100 points):				
Pre-exam obligations	points	Final exam	points	
Active class participation		written exam	70	
Practical work	10	oral exam		
Preliminary exam(s)	20			
Seminar(s)				
The methods of knowled project presentation, sen	0	y differ; the table presents only	y some of the options: written exam, oral exam,	