
Course Unit Descriptor

Study Programme: Computer Science – Master

Course Unit Title: Compiler Construction

Course Unit Code: CS705

Name of Lecturer(s): Mirjana Ivanović

Type and Level of Studies: Master Academic Degree

Course Status (compulsory/elective): Elective

Semester (winter/summer): Winter

Language of instruction: Serbian (primary), English (secondary)

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

Number of ECTS Allocated: 8

Prerequisites: Object-Oriented Programming 1, Data Structures and Algorithms 1

Course Aims:

The main objective of the course is to learn students about essential work of different phases of compilers and make them

skilled to participate at bigger project and implement compilers for simple procedural and object-oriented languages.

Learning Outcomes:

Minimum: Successful students should be able to implement compiler for subset of procedural programming language

based on given grammar for language specification.

Desirable: At the end of the course it is expected that successful students are able to develop adequate software for

translation from input text to output text/form based on given specification (grammar rules).

Syllabus:

Theory

Techniques for programming languages specifications. Syntax diagrams, Backus and Extended Backus normal forms for

programming language grammar specification. Context-free grammars, LL, LR and attributed grammars. Essential

principles, tasks and phases of compilers: lexical analysis, syntax analysis using recursive descent technique, semantic

analysis (type checking) and symbol table maintenance, code generation (using Virtual machine). Description of complete

implementation of compiler for simple procedural (including some basic object-oriented concepts) programming language.

Complier generators.

Practice

Practical part is oriented to the gradual developement and extension of existing parts of code for a real compiler. During

laboratory classes students have task to fully implement parts of compiler adding their own code. They gradualy develop

compiler following theoretical classes.

Required Reading:

1. Hanspeter Mössenböck, Compiler Construction Slides, Institut für Systemsoftware, Johannes Kepler Universität

Linz, Austria

2. Aho V., Ullman J. D.: "Principles of Compiler Design", Addison-Wesley, 1977.

3. Aho V., Sethi R., Ullman J. D. "Compilers, Principles, Techniques and Tools, Addison-Wesley, 1985.

Weekly Contact Hours: 5 Lectures: 2 Practical work: 3

Teaching Methods:

Theoretical classes are based on the classical teaching model involving a projector and .ppt presentations. Basic principles

and compiler functions are presented by illustrative examples. Students are expected to pass 3 theoretical tests.

At theoretical exercises, existing parts of code for compiler implementation will be explained in more details. During

laboratory classes students will work on implementation of particular parts of their own versions of the compiler. All

together 5 tasks-seminars are foreseen for complete implementation of the compiler and grades depend on number of

completed tasks. At the oral exam students demonstrate understanding of principles of compilers.

Knowledge Assessment (maximum of 100 points):

Pre-exam obligations points Final exam points

Active class

participation
 written exam

Tests and practical

tasks
60 oral exam 40

Preliminary exam(s) …….

Seminar(s)

The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam,

project presentation, seminars, etc.

