Course Unit Descriptor

Study Programme: Ph.D. in Computer Science

Course Unit Title: Homogeneous Structures 1

Course Unit Code: ID024

Name of Lecturer(s): Dragan Mašulović, Igor Dolinka

Type and Level of Studies: Doctoral Academic Degree

Course Status (compulsory/elective): Elective

Semester (winter/summer): Winter

Language of instruction: Serbian (primary), English (secondary)

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

Number of ECTS Allocated: 7

Prerequisites: None

Course Aims:

Introducing students to the first priciples of the theory of countable homogeneous structures.

Learning Outcomes:

At the end of the course, each successful student shall be able to construct and examine countable homogeneous structures using the method of Fraïssé.

Syllabus:

Structures. Homomorphisms and substructures. Formulas and types. Maps and the formulas they preserve. Theorems of

Skolem (without proof). Back-and-forth equivalence. Automorphisms. Interpreting one structure in another.

Amalgamation and preservation. Fraïssé construction and ω -categorical structures. Ryll-Nardzevski theorem. Some

important examples of countable homogeneous structures: random graph, random poset, rational Urysohn space

Required Reading:

1. W. Hodges, A shorter model theory, Cambridge University Press 2002

2. S. Hedman, A first course in logic, Oxford Texts in Logic 1, Oxford University Press, 2008

P. J. Cameron, Oligomorphic permutation groups, London Mathematical Society Lecture Note Series 152, Cambridge

University Press, 2001

Weekly Contact Hours: 2	Lectures: 2	Practical work: 0

Teaching Methods:

Theoretical instruction lectures are based on the classical teaching model (blackboard+video beam). Students are obliged

to submit a seminar paper. At the oral exam students are expected to demonstrate the in-depth understanding of the material.

Knowledge Assessment (maximum of 100 points):

Pre-exam obligations	points	Final exam	points
Active class		writton oxom	
participation		witten exam	
Practical work		oral exam	30
Preliminary exam(s)			

Seminar(s)	70			
The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam,				
project presentation, seminars, etc.				